扫描探针显微镜的应用

SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。

SPM的价格相对于电子显微镜等大型仪器来讲是较低的。

同其它表面分析技术相比,SPM 有着诸多优势,不仅可以得到高分辨率的表面成像,与其他类型的显微镜相比(光学显微镜,电子显微镜)相比,SPM扫描成像的一个巨大的优点是可以成三维的样品表面图像,还可对材料的各种不同性质进行研究。同时,SPM 正在向着更高的目标发展, 即它不仅作为一种测量分析工具,而且还要成为一种加工工具, 也将使人们有能力在极小的尺度上对物质进行改性、重组、再造.SPM 对人们认识世界和改造世界的能力将起着极大的促进作用。同时受制其定量化分析的不足,因此SPM 的计量化也是人们正在致力于研究的另一重要方向,这对于半导体工业和超精密加工技术来说有着非同一般的意义

扫描隧道显微镜(STM)在化学中的应用研究虽然只进行了几年,但涉及的范围已极为广泛。因为扫描隧道显微镜(STM)的最早期研究工作是在超高真空中进行的,因此最直接的化学应用是观察和记录超高真空条件下金属原子在固体表面的吸附结构。在化学各学科的研究方向中,电化学可算是很活跃的领域,可能是因为电解池与扫描隧道显微镜(STM)装置的相似性所致。同时对相界面结构的再认识也是电化学家们长期关注的课题。专用于电化学研究的扫描隧道显微镜(STM)装置已研制成功。

SPM近些年来应用的领域越来越多,其中主要的除了获得高分辨的二维和三维表面形貌外,在线监测是个热点,其中包括了生物活体的在线监测和物理化学反应的在线监测。在材料领域中,人们利用它来研究腐蚀的微观机理。腐蚀是一种发生在固体与气体或液体分界面上的现象。虽然通常人眼就可以看到腐蚀造成的结果,但是腐蚀都是从原子尺度开始的。在生物医学研究对象也从最初的DNA迅速扩大到包括细胞结构、染色体、蛋白质、膜等生物学的大部分领域。更为重要的是,SPM作为静态观察,还可以实现动态成像,按分子设计制备具有特定功能的生物零件、生物机器、将生物系统和微机械有机地结合起来。

在微机械加工方面:由于SPM 的针尖曲率半径小,且与样品之间的距离很近( < 1nm),在针尖与样品之间可以产生一个高度局域化的场,包括力、电、磁、光等。该场会在针尖所对应的样品表面微小区域产生结构性缺陷、相变、化学反应、吸附质移位等干扰,并诱导化学沉积和腐蚀,这正是利用SPM 进行纳米加工的客观依据。同时也表明,SPM不是简单用来成像的显微镜,而是可以用于在原子、分子尺度进行加工和操作的工具

在纳米尺寸、分子水平上SPM是最先进的测试工具,它在材料及微生物学科中发挥了非常重要的作用,可以预测在今后新材料的发展以及揭示生命领域的一些重要的问题上将会发挥重要作用。结合SPM家族中的各类分析手段,例如MFM,SKPFM,AFM等,收集材料的各种信息,对材料进行纳米级和原子级别的原位观察,具有重要的意义。

任何事物都不是十全十美的一样,SPM也有令人遗憾的地方。由于其工作原理是控制具有一定质量的探针进行扫描成像,因此扫描速度受到限制, 测效率较其他显微技术低;由于压电效应在保证定位精度前提下运动范围很小(难以突破100μm量级),而机械调节精度又无法与之衔接,故不能做到象电子显微镜的大范围连续变焦,定位和寻找特征结构比较困难;

扫描探针显微镜中最为广泛使用管状压电扫描器的垂直方向伸缩范围比平面扫描范围一般要小一个数量级,扫描时扫描器随样品表面起伏而伸缩,如果被测样品表面的起伏超出了扫描器的伸缩范围,则会导致系统无法正常甚至损坏探针。因此,扫描探针显微镜对样品表面的粗糙度有较高的要求;

由于系统是通过检测探针对样品进行扫描时的运动轨迹来推知其表面形貌,因此,探针的几何宽度、曲率半径及各向异性都会引起成像的失真(采用探针重建可以部分克服)


您可能感兴趣产品