正相色谱的原理

定义

正相色谱基本上可以被看做是液固吸附色谱,其柱填料是吸附剂,其表面上分布有活性吸附位点,溶剂和溶质分子均能被吸附于活性位点上。由于相互作用力有大有小,溶剂分子与溶质分子、溶质分子相互之间又存在竞争吸附,从而造成了在柱内保留时间的差异,使不同物质得到分离。

正相色谱是采用极性固定相(如带有二醇基、氨基、和氰基的固定相及硅胶、三氧化二铝等)、非极性流动相(如正己烷等)的分离方法。这是一种根据分子的极性大小将其分开的液相色谱技术。

原理

正相色谱是采用极性固定相(如带有二醇基、氨基、和氰基的固定相及硅胶、三氧化二铝等)、非极性流动相(如正己烷等)的分离方法。这是一种根据分子的极性大小将其分开的液相色谱技术,因为正相色谱以吸附效应作为分离的基础,所以也称为吸附色谱。

在正相色谱中,样品分子与载体基质的硅醇基团发生特异的极性相互作用,与固定相产生强极性相互作用的极性样品分子比较难被洗脱,在柱内停留比较长的时间,反之,极性较弱或非极性分子与硅胶之间产生相对较弱的相互作用,比较容易被洗脱,因而在柱内停留的时间较短。因此,正相色谱可以根据溶剂极性差别而达到分离的目的。

正相色谱的保留机理类似于吸附过程。极性样品分子和溶剂分子吸附在柱填料表面的极性基团(吸附剂)上。对于正相中经常选用的氰基、氨基或二醇基固定相柱,吸附位点通常为键合相配体或硅烷醇。在使用硅胶时,吸附位点为硅烷醇(一SiOH)。极性样品分子一般包含连接在烃基(如苯基或己基)上的一种或多种极性官能团。非极性样品在吸附位点上的吸附力非常弱;但对于一些强极性化合物,也会由于其与固定相的相互作用非常强烈而导致分离效率较差,使得峰形严重拖尾。


您可能感兴趣产品